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ABSTRACT
Singing voice conversion (SVC) is one promising technique
that can enrich the way of human-computer interaction by en-
dowing a computer the ability to produce high-fidelity and
expressive singing voice. In this paper, we propose DiffSVC,
an SVC system based on denoising diffusion probabilistic
model. DiffSVC uses phonetic posteriorgrams (PPGs) as con-
tent features. A denoising module is trained in DiffSVC,
which takes destroyed mel spectrogram produced by the dif-
fusion/forward process and its corresponding step informa-
tion as input to predict the added Gaussian noise. We use
PPGs, fundamental frequency features and loudness features
as auxiliary inputs to assist the denoising process. Experi-
ments show that DiffSVC can achieve superior conversion
performance in terms of naturalness and voice similarity to
current state-of-the-art SVC approaches.

Index Terms— singing voice conversion, diffusion prob-
abilistic model

1. INTRODUCTION

Singing plays an important role in human daily life, including
information transmission, emotional expression and enter-
tainment. The technology of singing voice conversion (SVC)
aims at converting the voice of a singing signal to a voice
of a target singer without changing the underlying content
and melody. Endowing machine with the ability to produce
high-fidelity and expressive singing voice provides new ways
for human-computer interaction. SVC is among the possible
ways to achieve this.

Most recent SVC systems train a content encoder to ex-
tract content features from a source singing signal and a con-
version model to transform content features to either acoustic
features or waveform. One class of SVC approaches jointly
trains the content encoder and the conversion model as an
auto-encoder model [1, 2]. Another class of SVC approaches
separately trains the content encoder and the conversion
model. These approaches train an automatic speech recogni-
tion (ASR) model as the content encoder. The ASR model
can be an end-to-end model, as in [3, 4] or a hybrid HMM-
DNN model, as in [5]. The conversion model can be the
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generator in a generative adversarial network (GAN) [3, 4],
which directly generates waveform from content features;
or a regression model, which transforms content features to
spectral features (e.g., mel spectrograms), and adopts an addi-
tionally trained neural vocoder to generate waveform. In this
paper, we focus on the latter class and devote to introducing
the recently-emerged diffusion probabilistic modeling into
the conversion model.

Diffusion probabilistic models, or diffusion models for
brevity, are a class of promising generative models [6]. It
has been demonstrated that diffusion models are capable of
achieving state-of-the-art performance on generative model-
ing for natural images [7, 8] and raw audio waveform [9, 10].
There are two processes in a diffusion model, i.e., the dif-
fusion/forward process and the reverse process. The diffu-
sion/forward process is a Markov chain with fixed parameters,
which converts the complicated data into isotropic Gaussian
distribution by adding Gaussian noise gradually. The reverse
process is also a Markov chain, which restores the data struc-
ture from Gaussian noise in an iterative manner. One merit
of diffusion models is that they can be efficiently trained by
optimizing the evidence lower bound (ELBO), also known
as variational lower bound (VLB), of the data likelihood. In
[7], one certain parameterization trick can convert the learn-
ing process of diffusion models into a regression problem. We
follow this setting in this paper.

We propose DiffSVC, which is an SVC system based on
diffusion model. We use an ASR acoustic model to extract
phonetic posteriorgrams (PPGs) from singing signals as the
content features. A diffusion model is trained to recover
mel spectrograms iteratively from Gaussian noise, condi-
tioning on content, melody and loudness features. We show
that DiffSVC can achieve superior conversion performance
in terms of naturalness and voice similarity, compared with
current state-of-the-art SVC approaches. The contributions
of our work include: (1) To the best of our knowledge, the
proposed DiffSVC system is the first SVC system using the
diffusion probabilistic model. We show that diffusion model
can be effectively adopted for the SVC task; and (2) DiffSVC
achieves better conversion performance in terms of natural-
ness and voice similarity than previous SVC systems.

The rest of this paper is organized as follows: Section 2
presents related work. Section 3 introduces the diffusion



probabilistic model. Details of the proposed DiffSVC system
are presented in Section 4. Experimental results are shown in
Section 5 and Section 6 concludes this paper.

2. RELATED WORK

2.1. Singing Voice Conversion

Current SVC approaches can be categorized into two classes,
i.e., parallel SVC and non-parallel SVC, in terms of whether
parallel training data is required. Most initial attempts for
SVC are within the parallel SVC paradigm. These ap-
proaches model parallel training samples using statistical
methods, such as Gaussian mixture model (GMM)-based
many-to-many eigenvoice conversion [11], direct waveform
modification based on spectrum difference [12, 13]. GAN-
based parallel approach has also been proposed to improve
conversion performance [14]. Since parallel SVC approaches
require parallel data (i.e., source and target singers sing the
same contents), which is expensive to collect, for the train-
ing process, researchers have investigated many non-parallel
SVC approaches. Auto-encoder based on the WaveNet [15]
structure has been used for unsupervised SVC in [1], which
can convert among singers appeared in the training set. This
approach adopts an adversarial speaker classifier to disentan-
gle singer information from the encoder output. To further
improve this method, an additional pitch adversarial mecha-
nism is added to remove pitch information from the encoder
output in [2]. Variational auto-encoder (VAE) [16], vari-
ational autoencoding Wasserstein GAN (VAW-GAN) [17],
and phonetic posteriorgram (PPG) models [5] are also inves-
tigated for non-parallel SVC. Very recently, the combination
of a PPG model and a waveform generator achieves promis-
ing SVC performance [3, 4].

2.2. Diffusion Probabilistic Models

There are two streams of efforts, pushing the research on dif-
fusion probabilistic models forward. One is research on the
score matching model, which originates from [18], where the
problem of data density estimation is simplified into a score
matching problem (the estimation of the gradient of the data
distribution density). The other is research on denoising dif-
fusion probabilistic model, which originates from [6], where
a diffusion Markov chain is used to destroy data structure into
Gaussian noise and another reverse process is used to generate
data from Gaussian noise. Recently, great progress has been
made in these two streams. In [7], the diffusion model has
been able to generate high-quality images. Slightly later, the
diffusion model also makes it to generate high-quality audio
samples [9, 10]. On the other hand, score matching model has
also been proved to be capable of generating high-resolution
images using a neural network to estimate the log gradient
of the target data probabilistic density function [19]. After-
wards, a unified framework is proposed in [20], which gener-
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Fig. 1. Graphical model for the reverse process and the diffu-
sion/forward process in a diffusion probabilistic model. The
diffusion/forward process (dotted arrow) gradually converts
data into noise within finite steps. The reverse process (solid
arrow) is a parametric procedure which attempts to restore
data structure from noise.

alizes and improves previous work on score matching model
through the lens of stochastic differential equations (SDEs).
The diffusion model in [7] and the score matching model in
[19] have been shown to be special cases under such frame-
work.

3. DIFFUSION PROBABILISTIC MODEL

In this section, we introduce the denoising diffusion proba-
bilistic model (or diffusion model in short) [6]. We denote
the data as y0 ∼ q(y0). A diffusion model is a latent vari-
able model with the form pθ(y0) :=

∫
pθ(y0:T )dy1:T , where

y1, ..., yT are latent variables with the same dimensionality as
the data y0 and T is the total number of diffusion steps. As
shown in Fig. 1, a diffusion model contains two processes –
the diffusion/forward process and the reverse process. In the
remaining part of this section, we first introduce the two pro-
cesses in a diffusion model and then discuss the training and
sampling algorithms.

3.1. Diffusion/Forward Process

The diffusion/forward process in a diffusion model is mod-
eled as a Markov chain that gradually adds small noise to the
data until the data structure is totally destroyed at step T . That
is, the diffusion process gradually whitens the data into Gaus-
sian noise in T diffusion steps. The chain transitions are of-
ten modeled as conditional Gaussian transitions according to
a deterministic noise schedule β1, ..., βT , which are set to sat-
isfy β1 < β2 < ... < βT . The joint probability of the latent
variables is:

q(y1:T |y0) :=

T∏
t=1

q(yt|yt−1), (1)

where q(yt|yt−1) := N (yt;
√

1− βtyt−1, βtI). The mean
term

√
1− βt gradually decays the destroyed data towards

origin, and the variance term βt incorporates stochasticity into
the process by adding small noises, for t ∈ {1, ..., T}.
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Fig. 2. Schematic diagram of the conversion model in the proposed DiffSVC system, based on the diffusion probabilistic model.

3.2. Reverse Process

The reverse process in a diffusion model is a parameterised
process which gradually learns to restore data structure
from white noise along another Markov chain. When β’s
of the diffusion/forward process are small, both the diffu-
sion and reverse process have the same functional form [6],
i.e., Gaussian transitions. Starting at isotropic Gaussian
p(yT ) = N (yT ; 0, I), the joint distribution pθ(y0:T ) along
the reverse process satisfies:

pθ(y0:T ) := p(yT )

T∏
t=1

pθ(yt−1|yt), (2)

where the transition probability pθ(yt−1|yt) is parameterized
as N (yt−1;µθ(yt, t), σθ(yt, t)

2I) with shared parameter θ
among all the T transitions. The training process of a diffu-
sion model is to learn the parameter θ, such that pθ(yt−1|yt)
can eliminate the Gaussian noise (i.e., denoise) added during

the diffusion/forward process.

3.3. Training Diffusion Model

The goal of training a diffusion model is to maximize the
model likelihood pθ(y0) :=

∫
pθ(y0:T )dy1:T , given a train-

ing set {ym0 }Mm=1 with M samples. However, the likelihood
is intractable to compute in general because of the integration
operation in a very high-dimensional latent space. Thus, its
evidence lower bound (ELBO), which is also known as vari-
ational lower bound (VLB), is used to train the model:

Eq(y0)[log pθ(y0)] ≥ Eq(y0:T )[log
pθ(y0:T−1|yT )p(yT )

q(y1:T |y0)
]︸ ︷︷ ︸

:=ELBO

(3)
We refer readers to [6] for a complete proof of Eq. (3).

Thanks to the property of Gaussian transitions in the dif-
fusion process, the noisy data yt (i.e., destroyed data) at any



step t ∈ {1, ..., T} can be readily sampled given a data sample
y0:

q(yt|y0) = N (yt;
√
ᾱty0,

√
1− ᾱtI), (4)

where αt := 1− βt and ᾱt =
∏t
s=1 αs. Following the repa-

rameterization trick presented in [7], the learning process be-
comes a regression problem, where a neural network (param-
eterized with θ) is trained, which takes the noisy data yt and
the step variable t as input to predict the corresponding noise
ε. Using a simplified variant of the ELBO in Eq. (3) as in [7],
the negative ELBO becomes:

−ELBO = Ey0,t[||ε− εθ(
√
ᾱty0 +

√
1− ᾱtε, t)||22], (5)

where ε ∼ N (0, I), y0 ∼ q(y0), and t is uniformly sampled
from 1, ..., T . In this paper, we use Eq. (5) to train the diffu-
sion model.

3.4. Sampling with Langevin Dynamics

Given the parameterized reverse process with the well-learned
parameter θ, the sampling process (i.e., the generative pro-
cess) is to first sample a Gaussian noise yT ∼ N (0, I), and
then iteratively sample yt−1 ∼ pθ(yt−1|yt) for t = T, T −
1, ..., 1 along the reverse process, according to Langevin dy-
namics:

yt−1 =
1
√
αt

(yt −
1− αt√
1− ᾱt

εθ(yt, t)) + σtz, (6)

where σ2
t = 1−ᾱt−1

1−ᾱt
βt, z ∼ N (0, I) for t > 1 and z = 0 for

t = 1. The final y0 is the generated data.

4. DIFFSVC

In this section, we describe how we introduce the diffusion
model to SVC and present details of the proposed DiffSVC
system. We regard the content, melody and loudness infor-
mation as the most important components in a singing signal
for the task of singing voice conversion. In DiffSVC, we train
a Deep-FSMN (DFSMN)-based ASR acoustic model [21]
to extract PPGs as the content features with forced-aligned
audio-text speech data. We train the ASR model with frame-
wise cross-entropy loss, where the ground-truth labels are
phonemes (i.e., initials and finals with tone) for Mandarin
Chinese SVC.

We introduce the concept of denoising diffusion model-
ing into the conversion model in DiffSVC. The overall ar-
chitecture is depicted in Fig. 2. During the training process,
DiffSVC aims at predicting the isotropic Gaussian noise ε
from the noisy mel spectrogram yt and the step variable t,
leveraging additional information from PPG x, logarithmic
fundamental frequency feature (Log-F0) f0 and loudness fea-
ture l. We introduce the details in the following subsections.

4.1. PPG, Log-F0 and Loudness

The PPG prenet adopts a simple fully-connected (FC) layer
on the PPG input. DiffSVC represents the melody of a singing
signal using its fundamental frequency contour in logarithmic
scale. A-weighting mechanism of a singing signal’s power
spectrum is adopted to compute loudness features, following
[4]. We process the Log-F0 features and loudness features in
the same way. The Log-F0 features and loudness features are
first quantized into 256 bins, and then go through a melody
embedding lookup table and a loudness embedding lookup
table respectively. The processed PPG features, Log-F0 fea-
tures and loudness features are added elementwisely to obtain
the conditioner e, which is token as additional input to the dif-
fusion decoder.

4.2. Diffusion Modeling

Step Encoding. The diffusion step variable t is an important
input to a diffusion model, because it indicates the amount of
noise added to the noisy mel spectrogram yt. Following the
setting in [9], we first convert integral-valued t into an 128-
dimensional vector temb with a sinusoidal position encoding
as:

[sin(10
0×4
63 t), ..., sin(10

63×4
63 t), cos(10

0×4
63 t), ..., cos(10

63×4
63 t)]

(7)
Then we further process temb with two FC layers and Swish
activation function [22].
Diffusion Decoder. The diffusion decoder is trained to pre-
dict the noise ε added by the diffusion process from the noisy
mel spectrogram yt and the step variable t, taking auxiliary
conditioners e obtained from PPG x, Log-F0 f0 and loudness
l. Following [9], the diffusion decoder in DiffSVC adopts a
bidirectional residual convolutional architecture proposed in
[15] with a slight difference. We use dilation rate of 1 since
we work on mel spectrograms instead of raw waveform. The
receptive field of the diffusion decoder is sufficiently large
with a dilation rate of 1. The diffusion decoder first conducts
an one-dimensional convolutional operation with kernel-size
1 (Conv1x1) on the noisy mel spectrogram and then adopts
the ReLU activation on the output. The output of the step
encoder is added to every time step of the mel spectrogram
feature maps, and then fed into N residual blocks. The con-
ditioner e is imported into every residual block with separate
Conv1x1 layers, whose output is elementwisely added with
the mel spectrogram and step features. Then the gated mecha-
nism introduced in [15] are used to further process the feature
maps. We sum the skip connections from all the N resid-
ual layers and further process with two Conv1x1 layers in-
terleaved with a ReLU activation to get the diffusion decoder
output.
Training and conversion We summarize the training proce-
dure of the conversion model in DiffSVC in Algorithm 1 and
the conversion procedure in Algorithm 2, respectively.



Algorithm 1 Training procedure of the conversion model in
DiffSVC.
Require: The conversion model εθ(·); the training set
Dtrain = {(x, f0, l, y0)}Mm=1; Niter training iterations.

1: for i = 1, 2, ..., Niter do
2: Sample (x, f0, l, y0) from Dtrain;
3: ε ∼ N (0, I);
4: Sample t ∼ Uniform({1, · · · , T});
5: Take gradient descent step on

∇θ||ε− εθ(
√
ᾱty0 +

√
1− ᾱtε, t, x, f0, l))||22;

6: end for
7: return εθ(·);

Algorithm 2 Conversion procedure of DiffSVC.
Require: The trained conversion model εθ(·); one testing

sample (x, f0, l).
1: Sample yT ∼ N (0, I);
2: for t = T, T − 1, ..., 1 do
3: if t > 1 then
4: Sample z ∼ N (0, I);
5: else
6: z = 0;
7: end if
8: yt−1 = 1√

αt
(yt− 1−αt√

1−ᾱt
εθ(yt, t, x, f0, l)) +σtz, as in

Eq. 6;
9: end for

10: return y0;

5. EXPERIMENTS

We evaluate the proposed DiffSVC by conducting any-to-one
SVC tasks, where the singing voice of an arbitrary source
singer is converted to the target singer’s. In this section, we
first introduce the corpus for the experiments and the data pre-
processing methods. Then the implementation details of both
the baseline approaches and proposed approach are presented.
Finally, we present the evaluation results.

5.1. Dataset and preprocessing

The PPG extractor is trained using an internal Mandarin
Chinese ASR corpus, which contains around 20k hours
speech data recorded by thousands of speakers. The PPG
features have dimensionality of 218. The conversion model
in DiffSVC is trained with an internal dataset, which contains
14 hours singing data recorded by a female voice talent. The
audio format is 16-bit PCM with a sample rate of 24 kHz. Mel
spectrograms have 80 frequency bins, and are computed with
1024-point fast Fourier transform (FFT), 1024-point window
size and 240-point hop size (i.e., 10 ms). Mel spectrograms
are min-max normalized to the range [-1, 1]. Fundamental
frequency (F0) values are computed with hop size of 240. To
make the F0 computation robust, we use three F0 estimators,

i.e., DIO [23], REAPER 1 and SPTK [24]. The F0 values take
the median results by this three F0 estimators. The FFT size,
window size and hop size for computing loudness features
are 2048, 2048 and 240, respectively.

5.2. Implementation details

The output size of the PPG prenet, the melody embedding size
and loudness embedding size are all 256. The number of bins
for quantizing Log-F0 and loudness is 256. The step encoder
has the same hyper-parameter setting as in [9]. We use 20
residual layers in a diffusion decoder, where the number of
convolution channels are 256. The total number of diffusion
steps is 100 (i.e., T = 100). The noise schedule β’s are set
to linearly spaced from 1 × 10−4 to 0.06. We train models
with the ADAM optimizer [25] with a constant learning rate
of 0.0002.

We train a Hifi-GAN model [26] as vocoder to convert
mel spectrograms to the raw waveform. The official imple-
mentation2 (the “config v1.json” configuration) is used with
a slight change. Since we use 24 kHz audio samples and the
hop-size for computing mel spectrogram is 240, we factorize
the upsample rate as 240 = 8 × 5 × 3 × 2. To avoid possi-
ble checkerboard artifacts caused by the “ConvTranspose1d”
upsampling layer, we use temporal nearest interpolation layer
followed by a one-dimensional convolutional layer as the up-
sampling operation, as suggested in [27]. The kernel sizes we
use are [15,15,5,5].

5.3. Comparisons

We compare the proposed DiffSVC system with three state-
of-the-art SVC approaches. To make the comparison fair,
all models use the same DFSMN-based PPG extractor (as
introduced in Section 4) to compute PPG features as the con-
tent representations. Fundamental frequency (f0) values are
computed using the robust ensemble method introduced in
Section 5.1. The details of their implementations are pre-
sented as follows.
BLSTM-SVC This model is proposed by [28]. We make
slight modifications to make the comparison fair: (1) We use
mel spectrogram and Log-F0 as the acoustic features instead
of the conventional vocoder parameters such as mel cepstral
(MCEP) features and aperiodicity (AP) features; and (2) we
use the Hifi-GAN vocoder introduced in Section 5.2 for high-
fidelity waveform generation. We reimplemented the 512N
model in [28] since it shows better conversion performance
according to the experimental results in the orginal paper.
Seq2seq-SVC This model is proposed by [5], where a
sequence-to-sequence (seq2seq) based model using GMM-
based attention mechanism is trained to predict mel spec-
trograms from PPGs. Slight modifications are also made to

1[Online] https://github.com/google/REAPER
2[Online] https://github.com/jik876/hifi-gan



make the comparison fair: (1) we do not use the Mel encoder
and the singer confusion module because we focus on single-
speaker conversion model; (2) we use the Hifi-GAN vocoder
introduced in Section 5.2 for converting mel spectrograms
into waveform, instead of using a WaveRNN vocoder[29].
FastSVC This model is presented in [4], which uses a gener-
ator in a GAN model to convert content features directly into
waveform, and is trained by combining a multi-scale spectral
loss and an adversarial loss. In the original paper, the content
features used by the authors have a hop-size of 320, while the
PPGs used in this paper have a hop-size of 240. Therefore, we
change the upsampling rates of the generator to [5,4,4,3] from
the original [4,4,4,5]. To further adapt FastSVC for 24 kHz
audio synthesizing (originally, FastSVC works on 16 kHz
audio), we add the multi-period discriminator (MPD) [26]
as additional discriminator. These changes make FastSVC
achieving better conversion performance on 24 kHz audio
samples.

5.4. Evaluations

Subjective evaluations in terms of both the naturalness and
voice similarity of converted speech are conducted. We use
the 5 point Likert scale for testing with mean opinion score
(MOS) (1-bad, 2-poor, 3-fair, 4-good, 5-excellent). In the
MOS tests for evaluating naturalness, each group of stim-
uli contains recording samples from the target singer, which
are randomly shuffled with the samples generated by the four
comparative approaches, before they are presented to raters.
In the MOS similarity tests, converted speech samples are
directly compared with the recording samples of the target
singer. 10 utterances from an evaluation set are presented
for each system. We invited raters to participate in the eval-
uations in a quiet room and they were asked to use head-
phones during the tests. The raters were allowed to replay
each sample as many times as necessary and change their
ratings of any sample before submitting their results. The
MOS results are demonstrated in Table 1. We can see that
DiffSVC achieves significantly better performance than the
other three compared systems (i.e., BLSTM-SVC, Seq2seq-
SVC and FastSVC), in terms of both naturalness and voice
similarity. Audio samples can be found online3.

We use mel-cepstrum distortion (MCD) and F0 Pearson
correlation (FPC) as metrics for objective evaluations. We
extract the mel-cepstrum features of the generated audio sam-
ples and the ground-truth audio samples from the target singer
for the MCD evaluation. For the FPC evaluation, we ex-
tract the F0 features from the generated audio samples and
the recordings from the source singer. This is because we aim
to convert the voice of a singing signal to the target singer’s
voice without changing the underlying content and melody.
The DTW algorithm is adopted to align the predicted acous-
tic features towards the natural ones. The objective results

3[Online] https://liusongxiang.github.io/diffsvc/

Table 1. Subjective and objective evaluation results. “Nat.” is
for “Naturalness” and “Sim.” is for “Voice Similarity”, repec-
tively. Up arrows mean “higher the better”. Down arrows
mean “lower the better”.

System Subjective Objective
Nat. (↑) Sim.(↑) MCD (↓) FPC(↑)

Recordings 4.60±0.09 - - -
BLSTM-SVC 2.37±0.15 3.67±0.15 6.424 0.781
Seq2seq-SVC 2.77±0.17 3.57±0.15 7.175 0.885

FastSVC 3.83±0.13 4.17±0.13 6.422 0.904
DiffSVC 3.97±0.14 4.67±0.10 6.307 0.902

are presented in Table 1. We can see that, among the four
systems, DiffSVC achieves the best MCD result (6.307). In
terms of FPC, the FastSVC system achieves the best result
(0.904). DiffSVC achieves slightly lower FPC result than
FastSVC, with an FPC value of 0.902 and an 0.2% relative
drop.

Combining the experimental results, we can safely say
that DiffSVC achieves superior singing voice conversion per-
formance than previous SVC approaches in terms of natural-
ness and voice similarity of the converted signal.

6. CONCLUSION

In this paper, we have presented DiffSVC. To the best of our
knowledge, DiffSVC is the first SVC approach using a dif-
fusion probabilistic model to generate acoustic features (e.g.,
mel spectrogram) from content features (e.g., PPG). Experi-
ments demonstrate that the diffusion model can be effectively
adopted for the SVC task. Moreover, DiffSVC can achieve
superior conversion performance in terms of naturalness and
voice similarity than current state-of-the-art SVC systems, ac-
cording to the subjective and objective evaluations. In the
work, we focus on any-to-one SVC task. Future work in-
cludes further extending DiffSVC for any-to-many/any SVC.
Investigation on training a DiffSVC model under low-data-
resource scenario is also deserved research effort.
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